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1. OVERVIEW

My research has been primarily in Geometric Analysis. Recently I also became inter-
ested to develop and apply computational techniques inspired by Geometry and Topology in
Data Analysis problems. In this statement I describe some of my main achievements within
Geometric Analysis and my ongoing and future projects in the area. Then I discuss some
preliminary results I have obtained applying Geometric and Topological Methods in Data
Analysis, as well as my current research projects related to this topic.

2. GEOMETRIC ANALYSIS

2.1. Free-boundary Minimal Surfaces with Morse Index. In their fundamental paper
[28] Schoen and Yau study incompressible surfaces inside 3-manifolds with nonnegative scalar
curvature and deduce topological obstructions for an ambient space that contains them.
Fischer-Colbrie [10] later studied a parallel situation in which topological obstructions are
also found, but the stable minimal surfaces of Schoen-Yau are replaced by unstable minimal
surfaces (with finite Morse index). Minimal surface theory is a broad and rich area that has
seen much activity since.

A trend that resembles the above situation has recently emerged, but now in the world
of rigidity theorems for minimal surfaces. First, several rigidity statements were obtained
assuming the existence of an area-minimizing surface of some kind [3,4,6,8,27]. Then,
Marques and Neves proved in [23] a rigidity result for unstable minimal surfaces on the 3-
sphere. They showed that any metric on S® with positive Ricci curvature and scalar curvature
bounded below by 6 always contains an embedded minimal 2-sphere of index one that realizes
the width', and whose area is bounded above by 47. Furthermore, it asserts that the area of
the 2-sphere equals 47 if and only if the metric is the round metric of the 3-sphere, in which
case the minimal 2-sphere is equatorial.

In an ongoing collaboration with D. Maximo and I. Nunes we are working on proving an
analogue to the Marques-Neves theorem but for manifolds with boundary. In this context,
“minimal surface” is replaced by “free-boundary minimal surface.” These are defined as
follows. Let M? be a compact manifold with boundary and ¥? C M3 be an embedded
surface with boundary so that 3% C OM. Consider a smooth variation of ¥ by surfaces whose
boundary lies in the boundary of M. This is, a smooth family of embedded surfaces with
boundary {¥;}; so that ¥y = X, and 9%; C M. A standard calculation gives

4 Area(X;) = — / (H,X)dA + / (X, v)ds,

dt|,_g b o5
where v is the outward unit normal of 0% tangent to X, H is the mean curvature vector of
¥ in M3, and X is the variation field associated to the smooth family {¥;}, which lives in
the tangent space of OM since the surfaces of the family all have boundary lying in OM.
From this, it follows that X is a critical point for the area functional over all such possible
variations only if H =0 and v L M. If this is the case we say that X is a free-boundary
minimal surface.

After some preliminary calculations, the problem (originally suggested by Marques) takes

the following form:

1See e.g [23] for a precise definition.
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Conjecture 2.1. Let g be a metric on the 3-ball B with nonnegative Ricci curvature and
so that h > glop, where h is the second fundamental form of the boundary with respect to
the inward-pointing normal. Then, there exists an embedded, free-boundary minimal disk
D? C B3 of index one, such that W(B3,g) = |D| and

(1) L(dD) < 2r.

The equality L(OD) = 2w holds if and only if g is the flat metric of the unit ball, in which
case D is a hyperplane intersect the ball.

In the above conjecture L(0D) stands for the length of the boundary of D, and W (B3, g)
is the width of (B3, g), which is a min-max invariant of the metric. (See e.g. [11,23] for more
details.)

Our strategy to prove Conjecture 2.1 is divided into two parts. First we prove existence
of the free-boundary minimal surface using min-max methods. Then we use an argument
involving mean curvature flow to prove the rigidity statement. We have been able to prove
several intermediate steps of the project, including the existence of the minimal surface —but
we are still working on proving that it has Morse index 1. Once that is proved, we know how
to obtain inequality (1). On the other hand, we know how to prove the rigidity statement
if we can control the behavior of the second fundamental form of the boundary along its
evolution under mean curvature flow. Part of our current efforts are focused on proving those
estimates.

Rigidity statements for unstable free-boundary minimal surfaces on manifolds with bound-
ary are interesting but difficult to come by. Related problems to Conjecture 2.1 include
rigidity statements for stable free-boundary minimal surfaces on manifolds with boundary
such as the solid cylinder D x R, and so on. An ambitious, long term project is to prove a
Willmore-type theorem for minimal catenoids in the ball. This is an active area of research
that will keep us busy for a while.

2.2. Mass-Capacity and Classical Geometric Inequalities using Geometric Flows.
Geometric flows have played a fundamental role in recent developments in differential geome-
try. One that has attracted considerable interest is the so-called inverse mean curvature flow
(IMCF), introduced by Geroch in the 1970’s. The flow was originally used to give a heuristic
proof of the (Riemannian) Penrose inequality from General Relativity, which states that

(2) m > +/A/16m,

where m is the ADM-mass (of the universe) and A is the surface-area of all the black holes
inside it.

Geroch’s argument was based on a monotonicity formula for the Hawking mass along the
IMCF, but it lacked a weak PDE theory needed to guarantee that the IMCF exists —and a
proof that the Hawking mass can be defined, and remains monotonic, in such weak setting.
These gaps were filled by Huisken and Ilmanen in their well known, beautiful paper [17].
There, they develop a weak existence theory for IMCF and eventually are able to prove (a
slightly weaker version of) inequality (2): they showed that it holds when A is replaced by
the area of any single black hole.

In [18] Huisken and Ilmanen generalized their existence theory for the IMCF to arbi-
trary dimensions. Unfortunately, though, the main application of the technique —the Penrose
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inequality— does not follow in arbitrary dimensions by using IMCF since the Geroch mono-
tonicity formula for the Hawking mass is based on the Gauss-Bonnet theorem.

In my joint work with A. Freire we found the first application of the IMCF in arbitrary di-
mensions. We proved a mass-capacity inequality for conformally flat manifolds with minimal
boundary, and a volumetric Penrose inequality —both with rigidity statements.

Theorem 2.2 (Freire-Schwartz [12]). Given (M",g),n > 3 conformally flat, asymptotically
flat with nonnegative scalar curvature and with minimal boundary ¥, we have

3) m > Cy(%),

and equality holds if and only if (M, g) is the Riemannian Schwarzschild manifold. Here, m
is the ADM-mass and Cy(X) the capacity of the boundary.

The volumetric Penrose inequality, which is an improvement to my earlier result in [33],
states the following:

Theorem 2.3 (Freire-Schwartz [12]). For (M, g) as above we have

n—2
(4) m>2(Vo/Bn) ™
with equality holding if and only if (M, g) is the Riemannian Schwarzschild manifold. Here,

m is the ADM-mass, Vy is the FEuclidean volume of the region that ¥ bounds, and (3, the
volume of the Euclidean unit n-ball.

The proofs of inequalities (3) and (4) use a generalization of classic Pdlya-Szegd and
Aleksandrov-Fenchel inequalities for surfaces in R? which Freire and I were able to extend to
arbitrary dimensions (with rigidity) using IMCF [12]. They are of independent interest, and
stated as follows.

Let © C R™ be a smooth bounded domain —not necessarily connected— with mean-convex
boundary ¥ = 99 which is outer-minimizing in Q°. (This is, for ' D €, the area |09'| is no
less than |X|.) If we let Hy > 0 be the mean curvature of ¥, Cy(X) its capacity, and w1 is
the volume of the round (n — 1)-sphere in R", the generalized Pélya-Szego inequality states
that:

Theorem 2.4 (Freire-Schwartz [12]). Let ¥ be as above. Then

1
5 Co(X) < ———— | Hyd
5) () € g | Hode,
with equality if and only if Q) is a single round n-ball.
The generalized Aleksandrov-Fenchel inequality is:

Theorem 2.5 (Freire-Schwartz [12]). Let ¥ be as above. Then

n—2 1
6 Ag/wp_1)r—1 < —————— [ Hydoy,
(6) (Ao/wn—1) —(n—l)wn_l/z odoo
with if and only if Q) is a single round n-ball.

The mass-capacity inequality (3) can potentially be used to prove the Penrose inequality
in arbitrary dimensions, and that is one direction Freire and I are exploring. Our belief is
based on the fact that the only part of Bray’s proof of the Penrose inequality [2] (and its
subsequent generalization [5]) which depends on the Positive Mass Theorem is where it is used
to prove the mass-capacity inequality. Another interesting, related open problem that we are
considering is the Penrose inequality for conformally flat manifolds, in arbitrary dimensions.
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2.3. Black Rings, the Shrink-Wrap Principle, and Mean Curvature Flow. An ex-
citing development in the General Relativity community was the recent discovery of non-
spherical black holes. In their work [9], the physicists Emparan and Reall constructed “black
rings,” which are (4+1)-dimensional black hole spacetimes having black hole topology S* x S2.
A natural question that arises is to determine what is the Riemannian analogue of this result.
Two lines of works are related to the issue. First, there is a theorem by Meeks-Simon-
Yau [24, 25] which states that (a) the outermost minimal surface of an asymptotically flat
3-dimensional Riemannian manifold with nonnegative scalar curvature is, topologically, a 2-
sphere, and that (b) the complement of the region enclosed by the outermost minimal surface
is diffeomorphic to R? minus a finite number of balls. Then, there is the Galloway-Schoen
theorem [13,14], where a generalization of (a) is proved by showing that in dimensions three
and above, the outermost minimal hypersurface of an AF manifold with nonnegative scalar
curvature must be of positive Yamabe type (i.e. it admits a metric of positive scalar curva-
ture). In view of this, one could argue that the Riemannian version of Emparan and Reall’s
construction should be proving the existence of high-dimensional AF manifolds with non-
negative scalar curvature that contain outermost minimal hypersurfaces with non-spherical
topology. This is exactly what I addressed in [30]. I was able to prove the following:

Theorem 2.6 (Schwartz [30]). For any n,m > 1 there exists an asymptotically flat, scalar
flat (n + m + 2)-dimensional Riemannian manifold (M, g) with outermost apparent horizon
which is an outermost smooth minimal hypersurface with topology S™ x S™t1.

The techniques involved in the proof of this result are unrelated to the ones used by
FEmparan and Reall. The main difficulty I had to overcome to prove the above Theorem was
to be able to show that the minimal hypersurfaces I constructed were outermost. Generally
speaking, the issue of being outermost is not well understood. But there are some heuristic
arguments that may help clarify the situation. I am particularly interested in the so-called
Shrink-Wrap Principle, which states the following:

Conjecture 2.7 (Shrink-wrap Principle). The evolution of a celestial sphere® under mean
curvature flow inside an asymptotically flat manifold with nonnegative scalar curvature con-
verges to the outermost minimal hypersurface in it.

If, as expected, Conjecture 2.7 is true, then we have a way to connecting the evolution
under mean curvature flow of a large sphere —and the singularities that may develop along it—
to the outermost minimal hypersurface in the ambient space. Consequently, if we understand
the formation of singularities along this flow we could, in principle, find new topological
obstructions and obtain a better understanding of outermost minimal hypersurfaces.

In an ongoing collaboration with E. Cabezas-Rivas we are trying to make inroads towards
proving Conjecture 2.7. Our first step consists in studying the formation of singularities along
MCF, with particular focus on singularities that increase the topological complexity of the
flowing hypersurface.

Conjecture 2.8. Forn >3 and 1 < k < n — 1, there exits a weak solution (in the sense
of [20]) of the mean curvature flow, with initial condition an almost-round sphere, which is
smooth for all times t > 0 except only at one singular time tg > 0, and so that the topology of
the hypersurfaces remains spherical for 0 < t < to, but becomes a product of spheres S* x "k
after the singular time t > tg. Furthermore, the flow converges to a smooth hypersurface of
topology S* x 8"k as t — oo.

2le. a large enough coordinate sphere.
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Conjecture 2.8 is of independent interest since no examples of solutions to MCF that
increase topological complexity are known to exist (see [35,36]). Furthermore, such behavior
goes against the general expectation that MCF is qualitatively similar to Ricci flow and thus
only simplifies the topology of the evolving hypersurface (cf. [16]).

The particular setting where we expect this phenomenon to occur is when we run the MCF
starting at a celestial sphere inside one of the manifolds of Theorem 2.6. The belief is based
on the heuristic argument that if Conjecture 2.7 holds, then celestial spheres flowing under
MCF converge to the outermost minimal hypersurface in the ambient space —and this is a
topological ring if we are inside one of the manifolds of constructed in Theorem 2.6. So far,
we have been able to prove several intermediate steps of Conjecture 2.8. The arguments go
along the lines of the works in [1,7,34].

2.4. Yamabe Problem and Topological Invariants. The Yamabe problem on a Rie-
mannian manifold consist in finding conformally-related metrics having constant scalar cur-
vature. The problem is equivalent to solving a nonlinear PDE with critical exponent. The
Yamabe problem was solved, for closed manifolds, in the well-known works of Yamabe, Aubin
and Schoen. On a manifold with boundary a similar problem can be posed, and a boundary
condition for the PDE is added. The geometric meaning of this condition is that the boundary
has now been prescribed a function as its mean curvature. In my PhD dissertation I proved
that given a noncompact, scalar flat manifold with super-linear volume growth at infinity
with positive mean curvature on its boundary, and any smooth function f on its boundary,
there exists a conformally related, scalar-flat metric with prescribed mean curvature f on
the boundary. The result is unexpected since, in the compact case, the prescribed mean
curvature function f must integrate to zero on the boundary. The (slightly more general)
PDE statement is the following:

Theorem 2.9 (Schwartz [29]). Let (M, g) be a noncompact Riemannian manifold as above.
Let f be a smooth function on OM and 3 > 1. There exists smooth function u > 0 on M with
(appropriate growth at infinity) so that

Ay — 4(7;7:21)]%(9)) u = 0 m M,
8% + "T_Qh(g)) u = 22fuf on M.

Here, R(g) is the scalar curvature of g, h(g) is the mean curvature of OM with respect to g,
and 0/0n is the outward-pointing normal on the boundary.

In particular, when (3 is the critical exponent 3 = n/(n—2), the conformally related metric
G =u" 2 q defines a complete, scalar flat metric on M with mean curvature f on OM.

A related geometric quantity is the so-called Yamabe invariant, which is an invariant of
the smooth structure of a manifold. It is defined as follows. First we define the Yamabe
constant of a Riemannian manifold (M, g) —which is an invariant of the conformal structure
only— as the infimum of the total scalar curvature among unit-volume, conformally-related
metrics, and we denote it by Y (M, [g]). The Yamabe invariant of M is then defined as the
supremum of the Yamabe constant among all of its conformal classes of metrics, and we shall
call it o(M).

Very few Yamabe invariants have been computed. The main difficulty for doing so lies on
the fact that it is a min-max quantity. In [33] I found upper bounds for the Yamabe constant
of outermost minimal hypersurfaces inside manifolds that satisfy the Penrose inequality. The
statement is the following;:
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Theorem 2.10 (Schwartz [32]). Consider an asymptotically flat manifold (M™,g),n > 3
with nonnegative scalar curvature containing an outermost minimal hypersurface 3.
(i) If n = 3, then #{components of 5} < s=mPwy(||RM||pc(s) + 2||Ric(v)||po(s))-
Equality is attained above if and only if the part of (M3,g) outside the outermost
minimal hypersurface is isometric to the Riemannian Schwarzschild 3-manifold of

mass m.
(ii) If (M™, g) satisfies the Penrose inequality (e.g. if 4 <n <7), then

Y(S,gls]) < (2m) 72 (wpe1) 1 (||RM]] poo sy + 21 Ric(v) || oo (s))-

Equality is attained above if and only if the part of (M™,g) outside the outermost
minimal hypersurface is isometric to the Riemannian Schwarzschild n-manifold of
mass m.

In my work [31] I proved that the Yamabe invariant for manifolds with boundary (which
is defined in a similar way to the closed-manifold case) satisfies monotonicity properties with
respect to connected-sum along the boundary. The precise statement is:

Theorem 2.11 (Schwartz [31]). Let My, My be smooth n-manifolds with boundary, n > 3.
Let M1# My, My U My denote their connected sum along the boundary and disjoint union,
respectively. Then o(My#Ms) > o(M;y U Ms), where

_ [ —(lo(d0)|% + |o(Mp)[3)n o(My),0(Ms) <0,
oMy U M) = { nain{a(]bl’),cr(MQ)}2 1 ochrwise.

The above theorem is the manifold-with-boundary analogue of a classic theorem of Kobayashi
for the monotonicity of the Yamabe invariant under connected sum in the closed-manifold
case. The result implies, in particular, that the numerical value of the Yamabe invariant of
handlebodies is maximal, equal to the one of the n-ball.

3. GEOMETRIC AND TOPOLOGICAL METHODS IN DATA SCIENCE

“A new postulate is accepted now in biosciences: the information provided
by the data in huge volumes without prior hypothesis is complementary and
sometimes necessary to conventional approaches based on erperimentation. In
the massive approaches it is the formulation of a relevant hypothesis to explain
the data that is the limiting factor. The search logic is reversed and the limits
of induction [need] to be considered.”

The above paragraph, extracted from Wikipedia’s page on big data, depicts the undergoing
revolution in biosciences. The paradigm shift that the big data era brings will most likely
penetrate all scientific disciplines. As massive data sets become widely available, we are no
longer bound —in principle— to fit the data within preexisting models. On the contrary, data
should be allowed to “speak freely.” How this is done, using computational methodologies
based on mathematically-sound techniques, is my main source of inspiration in this area.
Particularly, I am interested in finding ways to tackle the central data analysis problem of
Knowledge Discovery, which consists in extracting information from large data sets about
local and global structures and their interactions, and then transforming this output into an
understandable format for further use. The matter becomes increasingly relevant in an age
where standard data-mining methodologies are rendered obsolete.
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I have recently started several collaborations in which I apply and develop new techniques
inspired by geometric and topological methods to data science problems. Some preliminary
results have been obtained, but much work is still needed. In what follows I list some problems
I am currently working on and describe my future plans in the subject.

3.1. Topology Backs Holistic Medicine Claim. (Joint with CSURE REU student Louis
Xiang, and Kwai Wong from NICS.) The holistic concept in alternative medical practice
upholds that “all of people’s needs should be taken into account.” In other words, the body
is seen as a whole. The holistic point of view can be scientifically validated by determining
whether different bodily variables are related to one another. In my recent joint work we
provide strong evidence supporting this claim. More precisely, we establish the existence of
at least one fully non-linear relationship involving two bodily variables.

To “prove” this, we consider the ICU dataset from the PhysioNet Challenge (see §3.3
below). We look at the set consisting of all the measurements of the eight most populated
variables: Systolic Pressure; Diastolic Pressure; Heart Rate; Mean Arterial Pressure; Urine;
Temperature; Respiratory Rate; and GCS. The data set consists of about 300,000 points
in eight-dimensional Euclidean space. We used topology-based algorithms such as javaPlex
—modified to run in parallel- and were able to compute the first three Betti numbers for the
underlying space of the dataset. This is, the Betti numbers of the space we assumed the
points were sampled from. With the help of the Darter supercomputer at ORNL, we were
able to show that the underlying space has Betti numbers (bg, b1, b2) = (1,2,0). The simplest
topology with this sequence of Betti numbers is a space that deformation-retracts to a figure
eight, or a wedge of two circles. In other words, the eight most commonly measured variables
in the ICU dataset are shaped in what resembles a noisy, thick figure eight. The simplest
possible explanation for this phenomenon is that there is one nonlinear equation that two
of the eight variables satisfy. The next step in this project consists in finding the nonlinear
relation(s), and then showing that they hold with a high degree of confidence.

3.2. Topology-Based Classifiers. In a joint work with Erik Ferragut (ORNL) we are build-
ing a classifier based on topological techniques such as Mapper and javaPlex. Theirs will be
the first classifying algorithm of the kind. (Known algorithms for dealing with the classifica-
tion problem include support vector machines and k-nearest neighbor, among others.) The
motivation for the joint project is based on the fact that topological techniques have proved
successful for finding data structures that were previously unknown, as in [26]. This fuels
the expectation that classification algorithms based on these techniques will be very power-
ful, and particularly significant for dealing with high-dimensional data analysis. Potential
applications include tackling some of the hardest problems in cyber security related to the
discovery of anomalies.

3.3. ICU Patient Survival Prediction. The 2012 PhysioNet.org Computing in Cardiology
Challenge released a data set containing records from twelve-thousand ICU stays of adult
patients who were admitted to cardiac, medical, surgical, and trauma ICUs for a wide variety
of reasons. Up to forty-two variables were recorded at least once during the first forty-eight
hours after admission to the ICU. The goal of the Challenge was to predict, with the highest
accuracy possible, patient survival (i.e. to determine whether patients will have an in-hospital
death) by using only the data of the first forty-eight hours spent in the ICU.

In my current joint work with Xiaopeng Zhao (BME) and our student Adam Aaron we
apply topological and geometric techniques to obtain patient-survival predictions on this
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dataset. We believe there is room for improvement since the winning team of the 2012
Challenge had a fairly inaccurate prediction —it was right about 50% of the time.

3.4. Decoding the Brain. A recent challenge within the Kaggle.com website consists in
predicting visual stimuli from human brain activity recordings. The experimental data is
obtained by measuring the concurrent magnetoencephalography (MEG) recordings of human
brain activity when exposed to two different visual stimulus: picture of a face, and a scrambled
picture of a face. When a subject is presented a stimulus, the relation between the pattern
of recorded signal and the category of the stimulus may provide insights on the underlying
mental process. Among the approaches to analyze the relation between brain activity and
stimuli, the one based on predicting the stimulus from the concurrent brain recording is called
brain decoding.

I am currently working on this problem together with Hairong Qi (EECS) and our joint
graduate student Cristian Capdevila. Encouraging preliminary results have been obtained
using topological methods in conjunction with techniques such as Local Linear Embedding; a
depiction of our progress is in Figure 1, where averaged brain-activity behavior is portrayed
for a fixed individual. The two curves (red and blue) each represent brain activity states as
time (z-axis) progresses: red curve depicts average activity for “scrambled face”; blue curve
represents “face” brain activity. It is worth noticing that the face/scrambled face picture is
shown to each individual after one-half second; this explains why both red and blue curves
match for initial values of the z-parameter (time).

3.5. Conformal Geometry and Morphometrics. Morphometrics refers to the quantita-
tive analysis of form or shape. Morphometric analyses are commonly performed on organisms.
For example, in Evolutionary Biology they are useful for analyzing fossil records, impact of
mutations on shape, developmental changes in form, as well as correlations between eco-
logical factors and shape. Morphometrics can be used to quantify a trait of evolutionary
significance; detecting changes in the shape can also be used to determining function or
evolutionary relationships.

A standard procedure to quantify the similarity or dissimilarity of shapes is by using
the so-called procrustes distance, which is computed as follows. Each shape 5,5’ is usually
represented by a fixed amount of “landmark points;” these are points {p;},{p;} in S, 5’
respectively, chosen to be homologous and as far as possible from each other. The procrustes
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distance between the shapes is the infimum over the set of all Euclidean transformations® E
of the quantities >, ||E(p;) — p}||?.

Together with my PhD student J. Mike we are working on extending the results obtained
by Lipman, Al-Aifari and Daubechies [22] regarding the use of conformal geometry for finding
a continuous analogue of the procrustes distance from above. Applications of these types of
techniques are of particular interest in Evolutionary Biology and related fields.

1
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